Purification and characterization of NADH oxidase from Serpulina (Treponema) hyodysenteriae.

نویسندگان

  • T B Stanton
  • N S Jensen
چکیده

NADH oxidase (EC 1.6.99.3) was purified from cell lysates of Serpulina (Treponema) hyodysenteriae B204 by differential ultracentrifugation, ammonium sulfate precipitation, and chromatography on anion-exchange, dye-ligand-affinity, and size-exclusion columns. Purified NADH oxidase had a specific activity 119-fold higher than that of cell lysates and migrated as a single band during denaturing gel electrophoresis (sodium dodecyl sulfate-polyacrylamide gel electrophoresis [SDS-PAGE]). The enzyme was a monomeric protein with an estimated molecular mass of 47 to 48 kDa, as determined by SDS-PAGE and size-exclusion chromatography. Optimum enzyme activity occurred in buffers with a pH between 5.5 and 7.0. In the presence of oxygen, beta-NADH but not alpha-NADH, alpha-NADPH, or beta-NADPH was rapidly oxidized by the enzyme (Km = 10 microM beta-NADH; Vmax = 110 mumol beta-NADH min-1 mg of protein-1). Oxygen was the only identified electron acceptor for the enzyme. On isoelectric focusing gels, the enzyme separated into three subforms, with isoelectric pH values of 5.25, 5.35, and 5.45. Purified NADH oxidase had a typical flavoprotein absorption spectrum, with peak absorbances at wavelengths of 274, 376, and 448 nm. Flavin adenine dinucleotide was identified as a cofactor and was noncovalently associated with the enzyme at a molar ratio of 1:1. Assays of the enzyme after various chemical treatments indicated that a flavin cofactor and a sulfhydryl group(s), but not a metal cofactor, were essential for activity. Hydrogen peroxide and superoxide were not yielded in significant amounts by the S. hyodysenteriae NADH oxidase, indirect evidence that the enzyme produces water from reduction of oxygen with NADH. The N-terminal amino acid sequence of the NADH oxidase was determined to be MKVIVIGCHGAGTWAAK. In its biochemical properties, the NADH oxidase of S. hyodysenteriae resembles the NADH oxidase of another intestinal bacterium, Enterococcus faecalis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation, oxygen sensitivity, and virulence of NADH oxidase mutants of the anaerobic spirochete Brachyspira (Serpulina) hyodysenteriae, etiologic agent of swine dysentery.

Brachyspira (Serpulina) hyodysenteriae, the etiologic agent of swine dysentery, uses the enzyme NADH oxidase to consume oxygen. To investigate possible roles for NADH oxidase in the growth and virulence of this anaerobic spirochete, mutant strains deficient in oxidase activity were isolated and characterized. The cloned NADH oxidase gene (nox; GenBank accession no. U19610) on plasmid pER218 was...

متن کامل

Cloning and DNA sequence analysis of a Serpulina (Treponema) hyodysenteriae gene encoding a periplasmic flagellar sheath protein.

A Serpulina (Treponema) hyodysenteriae expression library was constructed in vector lambda ZAP and screened with a polyclonal antiserum raised against S. hyodysenteriae periplasmic flagella. A single immunoreactive plaque was chosen for further analysis. The recombinant phage from this plaque contained a gene encoding the 44-kDa protein that is on the outer layer (or sheath) of the periplasmic ...

متن کامل

Evaluation of microagglutination test for differentiation between Serpulina (Treponema) hyodysenteriae and S. innocens and serotyping of S. hyodysenteriae.

Swine dysentery is a mucohemorrhagic diarrheal disease caused by the anaerobic spirochete Serpulina hyodysenteriae. At present, the serotyping is done by immunodiffusion testing with lipopolysaccharide (LPS) extract as antigen and rabbit hyperimmune sera produced against different serotypes of S. hyodysenteriae. Since the preparation of LPS is time-consuming and requires a large quantity of bac...

متن کامل

Characterization of two DNA probes specific for Serpulina hyodysenteriae.

Two DNA probes, one 1.1- and one 0.75-kb probe, specific for Serpulina hyodysenteriae were isolated from a genomic library generated from virulent S. hyodysenteriae 5380. These probes are highly specific and react with all S. hyodysenteriae strains tested. Under stringent conditions, the DNA probes did not react with the nonpathogenic species Serpulina innocens or with other species of enteric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 175 10  شماره 

صفحات  -

تاریخ انتشار 1993